51 research outputs found

    The time course of exogenous and endogenous control of covert attention

    Get PDF
    Studies of eye-movements and manual response have established that rapid overt selection is largely exogenously driven toward salient stimuli, whereas slower selection is largely endogenously driven to relevant objects. We use the N2pc, an event-related potential index of covert attention, to demonstrate that this time course reflects an underlying pattern in the deployment of covert attention. We find that shifts of attention that occur soon after the onset of a visual search array are directed toward salient, task-irrelevant visual stimuli and are associated with slow responses to the target. In contrast, slower shifts are target-directed and are associated with fast responses. The time course of exogenous and endogenous control provides a framework in which some inconsistent results in the capture literature might be reconciled; capture may occur when attention is rapidly deployed

    Setting things straight: a comparison of measures of saccade trajectory deviation

    Get PDF
    In eye movements, saccade trajectory deviation has often been used as a physiological operationalization of visual attention, distraction, or the visual system’s prioritization of different sources of information. However, there are many ways to measure saccade trajectories and to quantify their deviation. This may lead to noncomparable results and poses the problem of choosing a method that will maximize statistical power. Using data from existing studies and from our own experiments, we used principal components analysis to carry out a systematic quantification of the relationships among eight different measures of saccade trajectory deviation and their power to detect the effects of experimental manipulations, as measured by standardized effect size. We concluded that (1) the saccade deviation measure is a good default measure of saccade trajectory deviation, because it is somewhat correlated with all other measures and shows relatively high effect sizes for two well-known experimental effects; (2) more generally, measures made relative to the position of the saccade target are more powerful; and (3) measures of deviation based on the early part of the saccade are made more stable when they are based on data from an eyetracker with a high sampling rate. Our recommendations may be of use to future eye movement researchers seeking to optimize the designs of their studies

    Oculomotor Evidence for Top-Down Control following the Initial Saccade

    Get PDF
    The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1) or defined as (Experiment 2) a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter

    Paradoxical Evidence Integration in Rapid Decision Processes

    Get PDF
    Decisions about noisy stimuli require evidence integration over time. Traditionally, evidence integration and decision making are described as a one-stage process: a decision is made when evidence for the presence of a stimulus crosses a threshold. Here, we show that one-stage models cannot explain psychophysical experiments on feature fusion, where two visual stimuli are presented in rapid succession. Paradoxically, the second stimulus biases decisions more strongly than the first one, contrary to predictions of one-stage models and intuition. We present a two-stage model where sensory information is integrated and buffered before it is fed into a drift diffusion process. The model is tested in a series of psychophysical experiments and explains both accuracy and reaction time distributions

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Temporal integration of sensory evidence for saccade target selection

    Get PDF
    AbstractPerceptual decision-making may be viewed as a process of integrating sensory evidence over time to a response threshold. Ludwig et al. (2005b) argued against an integration to threshold account for saccadic eye movement decisions based on data from a stochastic contrast discrimination task. They argued that evidence integration was time-limited, with the deadline being independent from the quality of the sensory evidence. In this study, the data from Ludwig et al. (2005b) were fit with a model in which sensory evidence is integrated to a time-varying threshold. The functional form of the threshold variation allowed the model to approximate a constant threshold as well as an abrupt deadline. Sensory evidence was computed on the basis of a temporally blurred representation of the stimulus sequence. The model provides an overall good fit to the latency and accuracy data. Its predictions are consistent with a short window of evidence integration, as proposed in the original study. The model produces qualitatively correct predictions for an experiment in which the availability of sensory evidence is varied systematically. Inspection of the model parameters, however, shows that integration was not terminated by an abrupt deadline, although a rather gradual deadline signal improved the fit for some observers

    The relative contributions of luminance contrast and task demands on saccade target selection

    Get PDF
    AbstractLuminance contrast and spatial frequency have a strong effect on when saccades are initiated. In this study, we ask to what extent the internal contrast response determines where saccades are directed to. Observers signalled, with a manual button press, which of two patterns was of higher (Experiment 1) or lower (Experiment 2) contrast. Even though the visual stimuli were identical in both experiments, the pattern of first fixated items was very different. Saccade target selection largely reflected the task instructions, suggesting that luminance contrast can be used to rapidly and effectively guide the eyes to task-relevant information

    Stimulus-driven and goal-driven control over visual selection

    No full text
    corecore